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Abstract.

Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-

shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three dif-

ferent angles while simultaneously measuring their fall speed, has been used in the field at multiple mid-latitude and polar

locations both with and without wind shielding. Here we show results of computational fluid dynamics (CFD) simulations5

of the airflow and corresponding particle trajectories around the unshielded MASC and compare these results to Arctic field

observations with and without a Belfort double Alter shield. Simulations in the absence of a wind shield show a separation of

flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the

mean particle fall speed by 55%(74%) for a wind speed of 5m s−1(10m s−1). MASC-measured fall speeds compare well with

Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are10

light (≤ 5m s−1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR measured velocities tend

to fall below a threshold value that increases approximately linearly with wind speed but is generally < 0.5ms−1. For those

events with wind speeds ≤ 1.5m s−1, hydrometeors fall with an orientation angle mode of 12◦ from the horizontal plane, and

large, low-density aggregates are as much as five times more likely to be observed. We conclude that accurate MASC obser-

vations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind15

fence and restriction of analysis to events where winds are light (≤ 5m s−1). Hydrometeors do not generally fall in still air, so

adjustments to these properties’ distributions within natural turbulence remain to be determined.

1 Introduction

Accurate measurement of snowfall is of importance to a wide range of scientific and public interests, including weather and

climate prediction and monitoring (Yang et al., 2005; Rasmussen et al., 2012; Thériault et al., 2015; Mekis et al., 2018), hy-20

drological cycles (Yang et al., 2005; Rasmussen et al., 2012; Thériault et al., 2012; Mekis et al., 2018), ecosystem research

(Rasmussen et al., 2012), snowpack monitoring and disaster management (Thériault et al., 2015; Mekis et al., 2018), trans-

portation (Rasmussen et al., 2001; Thériault et al., 2012, 2015), agriculture (Mekis et al., 2018), and resource management

(Thériault et al., 2015; Mekis et al., 2018).
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A persistent limitation of these studies is that catch-style precipitation gauges are prone to large uncertainties, especially25

when measuring snowfall in high winds – a bias referred to as “under-catch" (Groisman et al., 1991; Groisman and Legates,

1994; Goodison et al., 1998; Rasmussen et al., 2001; Yang et al., 2005). A common remedy is to apply a correction based

primarily on wind speed (Yang et al., 1993; Rasmussen et al., 2001, 2012; Wolff et al., 2015), although hydrometeor type

(Thériault et al., 2012) and a dynamic drag coefficient (Colli et al., 2015) may also be considered. The correction is calculated

by measuring the collection efficiency for a particular gauge or gauge-shield geometry, where collection efficiency is defined30

as the ratio of the gauge-measured precipitation rate to the best-estimate rate (Thériault et al., 2012). The Double Fence

Intercomparison Reference (DFIR) is the standard reference, as determined by the World Meteorological Organization (WMO;

Goodison et al., 1998); however, the DFIR has its own uncertainties which can lead to underestimation (Yang et al., 1993) or

even overestimation (Thériault et al., 2015) of snowfall rates.

Surface-based measurements of solid precipitation fall speed (Garrett and Yuter, 2014), fall orientation (Garrett et al., 2015;35

Jiang et al., 2019), and size distributions (Thériault et al., 2012) are all very sensitive to wind speed, with fall speed and

size distribution having a strong influence on precipitation gauge collection efficiency (Thériault et al., 2012, 2015). Accurate

measurement of solid precipitation characteristics is important for constraining the densities and size distributions used in

bulk microphysical parameterizations (e.g., Thompson et al., 2008; Morrison and Milbrandt, 2015). These parameters strongly

influence bulk fall speed, highlighted by the Intergovernmental Panel on Climate Change (IPCC) as a critical factor for deter-40

mining climate sensitivity (Flato et al., 2013). Likewise, knowledge of preferential hydrometeor orientation angles leads to the

improved inference of hydrometeor shapes from backscattered polarimetric radar intensities (Vivekanandan et al., 1991, 1994;

Matrosov et al., 2005; Matrosov, 2015), and these shapes combine with density to determine hydrometeor fall speeds (Böhm,

1989).

Past studies have typically combined airflow modeling and field observations to understand better the measurement error45

induced by winds and gauge geometry. Computational fluid dynamics (CFD) calculations characterize the wind velocity field

and its interaction with various stationary objects in turbulent flows (Moat et al., 2006; Dehbi, 2008; Ferrari et al., 2017).

Thériault et al. (2012) combined field observations and CFD simulations to better understand the scatter in collection efficiency

as a function of wind speed for a Geonor, Inc. precipitation gauge located in a single Alter shield. Findings suggested that in

addition to wind speed, the hydrometeor collection efficiency is a function of both hydrometeor type and size distribution. For50

example, hydrometeors such as graupel, with a relatively large density-to-surface-area ratio, fall faster and are collected more

efficiently than large, low-density, aggregate-type hydrometeors. Additionally, Colli et al. (2016a, b) compared shielded and

unshielded gauge configurations using both time-averaged and time-dependent CFD simulations and found that a single Alter

shield was effective in reducing the magnitude of turbulent flow above the gauge aperture. However, upwind shield deflector

fins still produced turbulence that propagated into the collection area and generally reduced the collection efficiency.55

One instrument that has received increased attention, but whose sampling characteristics have yet to be characterized in

detail, is the Multi-Angle Snowflake Camera (MASC; Garrett et al., 2012). The MASC system has overall dimensions of

43.5 cm x 58 cm x 21.5 cm (Stuefer and Bailey, 2016) and observes particles falling into a ring-shaped collection area. The

ring houses three cameras focused on a point at the ring center 10 cm away, with each camera separated by 36◦ (Garrett et al.,
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2012). A coupled system of directly opposing near-infrared emitters and detectors, vertically separated by 32 mm, detect falling60

hydrometeors larger than approximately 0.1 mm in maximum dimension. This triggers the cameras and three high-powered

LEDs located directly above (Garrett and Yuter, 2014). The time between triggers of the upper and lower emitter-detector pairs

yields a fall speed. High-resolution images are captured at an exposure time of 1/25,000th of a second, sufficient to capture a

vertical resolution of 40 µm in a hydrometeor falling at 1 m s−1 (Garrett et al., 2012).

The MASC system has helped to advance precipitation measurement by automating simultaneous high-resolution photogra-65

phy and fall speed measurement of falling hydrometeors from multiple angles, removing the need for tedious manual collection.

Variables derived from the high-resolution images include those describing a hydrometeor’s size, shape, fall orientation, and

approximate riming degree (Garrett et al., 2012; Garrett and Yuter, 2014; Garrett et al., 2015). As these hydrometeor properties

are crucial for accurate numerical modeling and microwave scattering calculations, the MASC has been used at various polar

and mid-latitude locations to constrain microphysical characteristics (Garrett et al., 2012; Garrett and Yuter, 2014; Garrett70

et al., 2015; Grazioli et al., 2017; Kim et al., 2018; Dunnavan et al., 2019; Jiang et al., 2019; Kim et al., 2019; Vignon et al.,

2019), improve radar-based estimates of snowfall rates (Gergely and Garrett, 2016; Cooper et al., 2017; Schirle et al., 2019),

automatically classify hydrometeors (Praz et al., 2017; Besic et al., 2018; Hicks and Notaroš, 2019; Leinonen and Berne, 2020;

Schaer et al., 2020), reconstruct particle shapes (Notaroš et al., 2016; Kleinkort et al., 2017) and size distributions (Cooper

et al., 2017; Huang et al., 2017; Schirle et al., 2019), and as ground truth comparisons for radar measurements (Bringi et al.,75

2017; Gergely et al., 2017; Matrosov et al., 2017; Kennedy et al., 2018; Oue et al., 2018; Matrosov et al., 2019). Unlike more

common precipitation gauges, the wind velocity field in the proximity of the MASC has not been simulated for various surface

winds speeds, directions, or turbulence kinetic energies (TKE).

Studies of hydrometeor behaviors using the MASC have shown, somewhat surprisingly, that frozen hydrometeor fall speeds

are only weakly dependent on their size or shape, particularly under conditions of high turbulence intensity (Garrett and Yuter,80

2014). Prior studies had shown a much stronger dependence but had theoretically assumed or experimentally arranged for

falling hydrometeors to settle in still air (Locatelli and Hobbs, 1974; Böhm, 1989). MASC measurements led to a hypothesis

that snow "swirls" in turbulent air in a manner that spreads particle fall speeds to both higher and lower values (Garrett and

Yuter, 2014) – an effect shown in prior work to be non-negligible in turbulent flows (Nielsen, 2007). While the fact that

snowflakes can just as readily move upwards as downwards is easily verified by any casual observations of a winter storm, it85

has remained unclear the extent to which the measurements of snowflake fall speed obtained by the MASC have been reflective

of reality rather than some artifact of interactions of surrounding winds with the instrument body.

In this study, we describe CFD simulations of hydrometeor-instrument interactions with specific application to the MASC.

We compare these simulations to field observations of hydrometeor characteristics from a MASC located in the Arctic. The

goal of this study is to better understand and characterize the influence of ambient wind speeds on MASC measurements of90

hydrometeor fall speed, fall orientation, and size distribution for both wind-shielded and unshielded configurations.
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Figure 1. (a) original MASC model as a Stereolithography (STL) file; (b) MASC model neglecting small-scale details (e.g., bolts, holes,

patches, etc.); (c)–(e) snapped mesh on MASC in three viewing directions.

2 CFD simulations

To explore how ambient winds affect MASC measurements of fall speed, we use the OpenFOAM 4.1 tool (Jasak et al., 2007)

for CFD calculations of falling particles and winds interacting with the MASC body. OpenFOAM is an open-source CFD

toolbox based on C++ libraries and codes designed to solve complex flow dynamics problems (Jasak et al., 2007; Chen et al.,95

2014; Greenshields, 2015). The solver uses the factorized finite volume method (FVM) with the Semi-Implicit Method for

Pressure Linked Equations (SIMPLE) algorithm (Caretto et al., 1973) to solve the Navier–Stokes equations. The k–ω Shear

Stress Transport (SST) model is utilized in this study to solve the turbulence closure problem due to its capability to capture

the flow separation near objects through the viscous sub-layer, without additional wall functions (Menter, 1993). We combine

the incompressible, robust simpleFOAM solver for steady incompressible turbulent flows (Balogh et al., 2012; Higuera et al.,100

2014) with the solidParticle and solidParticleCloud classes to study the motions of particles (Iudiciani, 2009).

To study particle-air interactions, the first step is to determine the two-phase flow type. The ratio between the average inter-

particle distance and the particle diameter is estimated. Provided the ratio is & 100, the flow can be treated as a dilute dispersed

system, and one-way coupling – wherein the particles do not collide with each other and also do not affect the flow field – can
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Table 1. Domain size and fluid and particle properties of simulations

Domain Dimensions

Width (x–dir) 4 m

Transverse thickness (y–dir) 4 m

Height (z–dir) 10 m

Grid (x × y × z) 16 × 16 × 40

Particle properties

Number of particles 400

Diameter (Dp) 2 mm

Density (ρp) 50 kg m−3

Fluid properties (at 0 ◦C)

Viscosity (µ) 1.34 ×10−5 m2 s−1

Density (ρf ) 1.284 kg m−3

be assumed (Elghobashi, 1994). The OpenFOAM blockMesh and snappyHexMesh tools are applied here to generate a mesh105

around the complex physical geometry of the MASC instrument (Gisen, 2014). The snappyHexMesh utility automatically

generates 3D meshes containing hexahedra and split-hexahedra efficiently. Figure 1(c–e) shows the MASC mesh for different

viewing angles. Spatial and temporal parameters are provided in Table 1.

For the simulation of hydrometeors in the atmosphere, we track spherical particles of mass mp, diameter Dp, and area Ap

within a Lagrangian framework, where the Eulerian fluid velocity field vf = vfx
x̂+ vfy

ŷ+ vfz
ẑ is interpolated from nearby110

grid points at the position of the particle to compute the instantaneous particle drag. The particle velocity vp is calculated at

each time step by assuming that the particle’s Reynolds number Rep is greater than unity, which gives a reduced form of the

Maxey–Riley equation of motion (Maxey and Riley, 1983):

mp
dvp
dt

=mpg−
1
2
CD(Re)ρfAp|vp(t)−vf (t)|(vp(t)−vf (t)) (1)

where the drag coefficient CD(Re) is a function of the relative Reynolds number Re= (vp−vf )Dp

µ , ρf is the fluid density, and115

g is the gravitational constant. Particles measured with the MASC had a median Rep of 108, with 95% of the values in the

range of 40<Re < 360.

In simulations of the response of the particles to horizontal winds in the vicinity of the MASC, the particles are evenly

distributed on a 20×20 grid with 1 mm spacing in the x–direction and 2 mm spacing in the y–direction. The particles fall

downward at an initial velocity of 1m s−1 from a height of 3m above the MASC in the−z direction under the force of gravity,120

reaching an average terminal velocity of 1.05m s−1 well before encountering flows perturbed by the MASC.
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Figure 2. Simulated wind field around the MASC with undisturbed winds set at 1m s−1 towards the positive y–direction. Color represents

the vertical wind speed vfz , and arrows show wind vectors on the y–z plane. The cross-section is in the middle of the aperture on the y–z

plane, and x–positive points out of the page.

Figure 2 shows interactions of a horizontal flow in the +y direction of 1 m s−1 with the MASC body. There is a clear

separation of flow on the upstream side of the aperture, a relatively large upward component above the aperture, and a smaller

downward component within the aperture.

The response of particles to these perturbations for horizontal winds in both the −x and +y directions is shown in Fig.125

3. There is low sensitivity to wind direction, but the mean particle fall speed within the MASC aperture decreases from

1.07(1.04)m s−1 to 0.30(0.26)m s−1 as the ambient wind speed increases from 1 to 10m s−1 (Table 2).

The influence of ambient turbulent intensity expressed as TKE = 1
2

(
v′fx

2 + v′fy

2 + v′fz

2) was calculated for TKE = 1, 3,

and 5 m2 s−2, where the perturbation velocity v′f is the difference between the instantaneous and average velocities of the

atmospheric flow. These TKE values are used as initial conditions in the k–ω closure model, which determines the shear stress,130

which in turn is used in the momentum budget equation. Figure 4 shows that for a wind speed of 10m s−1, the mean particle

fall speed is 24% lower for an initial value of TKE = 1m2 s−2 than it is for TKE = 5m2 s−2 (Table 2).

3 Hydrometeor observations

3.1 Methods

Processing of MASC imagery consists of distinguishing foreground pixels from background to define the region of interest135

(ROI) and then fitting the ROI with a bounding ellipse (Shkurko et al., 2018). The ellipse’s major axis is defined as the

maximum dimension Dmax for each image. The absolute value of the angle between Dmax and the local horizontal plane is
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Figure 3. Mean fall speed of particles vp as a function of ambient wind speed. Error bars represent the standard deviation of all the particles at

each ambient wind speed. x–negative and y–positive represent the wind pointing towards −x and +y directions (see Fig. 1(d)), respectively.

Terminal fall speed vt is included for comparison, and the initial TKE is 1 m2 s−2.

the orientation angle θ (Garrett et al., 2012; Garrett and Yuter, 2014; Garrett et al., 2015; Shkurko et al., 2018). A complexity

parameter χ is used to distinguished riming classes (Garrett and Yuter, 2014). Here we use χ≤ 1.35 to identify heavily rimed

graupel, 1.35< χ≤ 2.00 for moderate riming, and χ > 2.00 indicates sparsely-rimed aggregates. We note that a value of 1.75140

was used to distinguish moderately rimed particles from aggregates for Utah snow measurements in Garrett and Yuter (2014),
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Figure 4. Mean fall speed vp of particles versus ambient wind speed for different values of initial TKE. Terminal fall speed vt is included

for comparison.

with the observation that the value is subjectively determined by visual inspection of hydrometeor images and varies with

location. Mean values of fall speed vp, Dmax, θ, and χ from all three images are used for each particle.

A MASC was installed at the Department of Energy’s Third Atmospheric Radiation Measurement (ARM) Mobile Facility

(AMF3), Oliktok Point, Alaska, in February 2015. The initial deployment was atop a group of shipping containers with no145

wind shield (Fig. 5). On 22 August 2016, the MASC was relocated to ground level and placed inside of a Belfort Model 36001

Double Alter Wind Shield (Fig. 6). The central camera was pointed in the east-northeasterly direction (Jiang et al., 2019), with
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Table 2. Mean particle fall speed for various wind directions, wind speeds, and TKE values. The terminal fall speed is 1.05 m s−1 in all runs.

Ambient wind 1m s−1 2m s−1 5m s−1 10m s−1

Wind Direction

x-negative 1.07 m s−1 0.92 m s−1 0.47 m s−1 0.30 m s−1

y-positive 1.04 m s−1 0.91 m s−1 0.47 m s−1 0.26 m s−1

TKE

1 m2 s−2 1.07 m s−1 0.91 m s−1 0.47 m s−1 0.26 m s−1

3 m2 s−2 1.09 m s−1 0.96 m s−1 0.52 m s−1 0.31 m s−1

5 m2 s−2 1.09 m s−1 0.98 m s−1 0.54 m s−1 0.34 m s−1

(a) (b)

Figure 5. (a) Unshielded MASC configuration at the Third ARM Mobile Facility (AMF3), Oliktok Point, Alaska. (b) Ground-level view of

the MASC on top of a group of shipping containers. This was the MASC configuration from initial deployment in February 2015 through 21

August 2016. Image courtesy of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility.

surface wind observations showing this to be the predominant wind direction for the present study. The inner(outer) fence of

the shield is 1.22(2.44) m in diameter, with 32(64) deflector fins that are each 46(61) cm in length. Observations used here

include both unshielded and shielded configurations, spanning a 33-month period from 29 November 2015 to 28 August 2018150

(ARM Climate Research Facility, 2014). Raw data and images were processed with a local University of Utah processing suite

called mascpy (The Hive: University of Utah Research Data Repository, 2020a, b), similar to that described in Shkurko et al.

(2018).

To complement MASC observations and characterize the influence of ambient wind speed on MASC measurements, surface

wind measurements from a traditional meteorological ground suite (Ritsche, 2011; ARM Climate Research Facility, 2013)155

were matched to MASC hydrometeors by calculating a mean wind speed for the 1 minute period leading up to the observation

time corresponding to each hydrometeor. In addition to the quality control checks listed in Shkurko et al. (2018), a surface
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(a) (b)

Figure 6. (a) The MASC was relocated to ground level and placed inside a Belfort double Alter shield on 22 August 2016 (field site

photograph courtesy of Martin Stuefer). (b) The shield consists of inner and outer fences with diameters of 1.22 m and 2.44 m, respectively.

temperature threshold of < 2◦C was used to exclude liquid hydrometeors, which are occasionally misidentified by the mascpy

algorithm.

For a ground truth hydrometeor fall speed, mean Doppler velocity was calculated from the volume of scattering hydrometeors160

detected by a co-located Ka-band ARM Zenith-pointing Radar (KAZR). At a vertical resolution of 30 m, the KAZR produces

measurements of the first three moments of the Doppler spectrum: reflectivity, mean Doppler velocity, and spectrum width

(Widener et al., 2012; Oue et al., 2018). The Doppler velocity signal has a resolution of 0.05 m s−1 (Oue et al., 2018) and

consists of both larger particle fall speeds and the vertical air motions traced by smaller particles (Shupe et al., 2008). Using

only Doppler velocity measurements originating from below cloud base, we isolate the signal of the larger, precipitation-sized165

hydrometeors, while acknowledging the relatively small bias of Doppler broadening from turbulence and wind shear (Shupe

et al., 2008). Both mean Doppler velocity and cloud base height were retrieved from the ARM’s KAZR Active Remote Sensing

of CLouds (ARSCL) Value-Added Product (ARM Climate Research Facility, 2015; Clothiaux et al., 2000).

Results are presented here in the form of probability density function (PDF) estimates, calculated by normalizing the fre-

quency Ni of each histogram bin i of width ∆x (equally spaced bins), such that PDF ' Ni

Nt∆x . Here Nt =
∑
Ni is the total170

number of observations, and x is the variable of interest. The resulting PDF estimates were adjusted using a Gaussian kernel

smoothing function. For distributions of Dmax, the exponential slope parameter λ is computed using a linear least squares

regression from the peak of the log-linear distribution through the tail.
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Figure 7. Comparison of fall speed vp probability density function (PDF) estimates from MASC and KAZR measurements, both with

and without wind shielding of the MASC. KAZR fall speeds are determined from the mean Doppler velocity below cloud base (positive

downward, see Sect. 3.1 for details). The cutoff fall speed vc marks the location of the local minimum separating the two modes of the

shielded MASC distribution.

3.2 Observations of fall speed

Distributions of MASC-measured particle fall speed vp, both with and without a wind shield, are compared to coincident175

measurements from the KAZR in Fig. 7. The KAZR-measured fall speed mode is ∼ 1m s−1, while the MASC-measured fall

speed distribution has a mode of 0.08 m s−1 for both the shielded and unshielded cases. However, the shielded MASC fall

speed distribution has a second mode at 0.96 m s−1, similar to the location of the KAZR mode. Notably, a low-speed mode

was not observed in the KAZR measurements despite its velocity resolution of 0.05 m s−1.
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Figure 8. (a) Comparison of, and (b) difference between, estimates of surface wind speed Usfc probability density functions (PDFs) for the

high (vp > 0.45m s−1) and low (vp ≤ 0.45m s−1) fall speed modes of the shielded MASC fall speed distribution from Fig. 7. ∆PDF > 0

means the probability of vp > 0.45m s−1 is greater.
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The shielded MASC fall speed distribution deviates substantially from the corresponding KAZR distribution for fall speeds180

below 0.45m s−1. This is the location of the local minimum separating the two modes of the shielded MASC fall speed

distribution and is defined from here on as the cutoff fall speed vc: the fall speed below which MASC measurements are

assumed to be erroneous. The fall speed distribution can therefore be divided into two parts: vp > vc and vp ≤ vc.

2

4

0.5 1 1.5

2

4

0.5 1 1.5 0.5 1 1.5

Figure 9. Comparison of MASC hydrometeor fall speed and KAZR mean Doppler fall speed distributions for (a)–(c) unshielded and (d)–

(f) shielded MASC measurements. Surface wind speeds Usfc decrease from left to right. Where MASC PDFs are bimodal, the vertical line

marks the cutoff fall speed vc, indicating the location of the local minimum of the PDF separating the two modes. The number of observations

for each case is listed in Table 3. The terms “shielded" and “unshielded" refer only to the MASC.

To examine the influence of surface wind speeds on MASC fall speed measurements, Fig. 8 shows PDF estimates of wind

speed Usfc =
√
v2
fx

+ v2
fy

for the two separate parts of the shielded MASC fall speed distribution from Fig. 7. From the185
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Figure 10. Probability density function (PDF) estimates for shielded MASC fall speed vp for very light wind speeds and hydrometeors

divided into three riming classes: sparsely-rimed aggregates, moderately rimed, and rimed.

difference (Fig. 8(b)), it is apparent that the high-speed mode of vp > 0.45m s−1 is more likely to be observed when Usfc <

5m s−1. This matches well with the simulated fall speeds in wind speeds of≤ 5m s−1 from Table 2 and Figs. 3 and 4, although

the simulation did not include a wind fence.

Figure 9 compares MASC and KAZR fall speed distributions as a function of Usfc, again both with and without wind

shielding of the MASC. Qualitatively, the agreement between the MASC and KAZR distributions is maximized for shielded190

MASC measurements with light winds (Usfc ≤ 1.5m s−1), where only 7% of measured fall speeds are lower than the vc

threshold of 0.26m s−1 (Fig. 9(f)). When separated by riming class, shielded MASC fall speed distributions show discernible

differences only for the lightest winds. This is most apparent for Usfc ≤ 0.5m s−1 (Fig. 10(c)), where the most heavily rimed

particles (χ≤ 1.35) tend to exhibit the highest fall speeds. Particle counts corresponding to Figs. 9 and 10 are listed in Table 3.

3.3 Observations of orientation, maximum dimension, and riming degree195

Distributions of unshielded MASC-measured orientation angles tend to favor high angles in high winds (Usfc > 5m s−1, Fig.

11(a)), where the mode is 57◦, but this shifts to 28◦ for the lightest winds (Usfc ≤ 1.5m s−1, Fig. 11(c)). Shielded measure-

ments tend towards even lower angles in the lightest winds, with a mode of 12◦ for Usfc ≤ 1.5m s−1 (Fig. 11(f)). These results
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Table 3. Number and percentage of observed hydrometeors in each wind shielding case, surface wind speed Usfc category, and riming class.

Percentages may not add to precisely 100% due to rounding.

Usfc

Category > 5m s−1 ≤ 5m s−1 ≤ 1.5m s−1 ≤ 1.0m s−1 ≤ 0.5m s−1

No Wind Shield 2,249 5,097 460 167 32

Aggregates 176 (8%) 1,522 (30%) 67 (15%) 15 (9%) 5 (16%)

Moderately Rimed 1,209 (54%) 2,891 (57%) 315 (68%) 115 (69%) 14 (44%)

Rimed 864 (38%) 684 (13%) 78 (17%) 37 (22%) 13 (41%)

Wind Shield 85,151 58,939 5,730 1,372 161

Aggregates 15,320 (18%) 11,304 (19%) 1,299 (23%) 302 (22%) 41 (25%)

Moderately Rimed 47,147 (55%) 35,820 (61%) 3,477 (61%) 855 (62%) 86 (53%)

Rimed 22,684 (27%) 11,815 (20%) 954 (17%) 215 (16%) 34 (21%)

suggest that these solid hydrometeors tend to fall with their maximum dimensions nearly aligned with the horizontal plane

when left undisturbed by surface winds. When separated by riming class for the lightest winds (Usfc ≤ 1.5m s−1), shielded200

MASC orientation angles tend to be larger (i.e., more vertical) for sparsely-rimed aggregates (Fig. 12).

To examine surface wind influence on hydrometeor sizes observed by the MASC, distributions of Dmax and corresponding

λ values are shown in Fig. 13. The slope parameter λ is smallest when the MASC is shielded and surface winds are very

light (Usfc ≤ 1.5m s−1, Fig. 13(f)), and largest for unshielded observations in high winds (Usfc > 5m s−1, Fig. 13(a)). This

suggests that the largest hydrometeors are less likely to be captured by the MASC in strong winds, and even less likely without205

shielding. When these wind-shielded distributions are separated into riming degree classes (Fig. 14), aggregates exhibit a

26% percent decrease in λ, from 0.88 to 0.65 mm−1, when comparing high winds (Usfc > 5m s−1) to low winds (Usfc ≤
1.5m s−1). For a size distribution with the form nDmax

= nD0 exp(−λDmax), where nDmax
∆Dmax is the concentration of

particles with sizes between Dmax and Dmax + ∆Dmax, this decrease in λ corresponds to a number concentration that is 5

times higher for aggregates with Dmax = 7mm±∆Dmax/2. In contrast, moderately and heavily rimed hydrometeors only210

exhibit a λ decrease of 13% and 11%, respectively, when comparing high- and low-wind measurements.

The observation that measured concentrations of larger aggregates are relatively sensitive to surface winds compared to

more heavily rimed particle types suggests that the frequency distribution of riming classes observed by the MASC might also

reflect this sensitivity. Indeed, Table 3 shows that the percentage of wind-shielded aggregates reaches a maximum (25%) when

wind speeds are lowest (Usfc ≤ 0.5m s−1). The opposite is true for shielded rimed hydrometeors (i.e., graupel), implying that215

high-density rimed particles are more likely to be observed by the MASC than large, weakly rimed aggregates in the presence

of strong winds (Usfc > 5m s−1).
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Figure 11. Probability distribution function (PDF) estimates of MASC-observed orientation angle θ as a function of surface wind speed Usfc

for both shielded and unshielded configurations.

4 Discussion

The cutoff fall speed vc defined in Sect. 3.2 is a potentially useful threshold for quality control of MASC fall speed measure-

ments, and Fig. 9 suggests that vc = vc(Usfc) for shielded MASC measurements. Least squares linear regression fits of vc to220

Usfc are plotted in Fig. 15 in increments of 0.5 m s−1. Goodness-of-fit is 0.95 or greater for all but the most heavily rimed

particles, where a value of 0 indicates no relationship, and 1 indicates a perfect relationship. Data points tend to fall outside the

95% confidence interval for the most restricted wind speeds (Usfc < 2m s−1, or < 4m s−1 for graupel), corresponding to the
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Figure 12. As in Fig. 11 but with lighter winds and hydrometeors divided into three riming degree categories: sparsely-rimed aggregates,

moderately rimed, and rimed. Only shielded MASC measurements are shown.

lowest number of observations. These fits can be used as a guide for quality control of shielded MASC measurements, where

particles with fall speeds below vc are either omitted or corrected through extrapolation.225

Larger aggregates with negligible riming tend to be more susceptible to disturbance by surface winds and associated tur-

bulence, with more vertical orientations and lower frequency of occurrence than other riming classes. This finding supports

that of Thériault et al. (2012), who found that faster-falling hydrometeors are collected more efficiently by a Geonor gauge

inside a single Alter shield. Therefore particle type needs to be considered when accounting for the effect of wind speed on

snow measurements. However, the collection efficiencies for all riming classes sampled in the present study are found to be230

highly sensitive to winds in the absence of a wind shield. This sensitivity is reduced but still apparent for all but perhaps the

very lightest winds Usfc ≤ 0.5m s−1, even when located inside of a double wind fence. This is likely the result of upstream

turbulence propagating into the collection area as a result of wind interacting with shield deflector fins, as suggested in Colli

et al. (2016a, b).

Prior MASC observations (Garrett and Yuter, 2014) and work by Nielsen (2007) have shown that fall speed distributions are235

broadened in highly turbulent flows, where fall speeds are either enhanced are reduced by turbulent eddies. Considering also

that the MASC observes one hydrometeor at a time, while the KAZR fall speed is the mean value from a volume of scattering

hydrometeors, it is certainly possible that at least some of the measurements comprising the low-fall-speed mode of the MASC
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Figure 13. As in Fig. 11 but for maximum dimension Dmax and slope parameter λ. The slope parameter is calculated as the linear least-

squares fit from the peak through the tail of the distribution.

fall speed distributions are a natural result of turbulence and not caused by the interaction of surface winds with the MASC or

MASC-shield configuration. However, without more direct fall speed measurements to compare with, the highest confidence240

in the MASC fall speed measurements is achieved by omitting measured fall speeds that fall below vc.

5 Conclusions

Accurate measurement of solid hydrometeor fall speed, orientation, and size distribution is critical for constraining numerical

model parameterizations and remote sensing retrievals. Surface winds are known to have a strong influence on the collection
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Figure 14. As in Fig. 13 but with hydrometeors divided into three riming degree categories: sparsely-rimed aggregates, moderately rimed,

and rimed. Only shielded MASC measurements are shown.

of solid hydrometeors that is dependent on the specific gauge-shield configuration. Simulations of wind interactions with an245

unshielded MASC showed an average reduction in mean particle fall speed of 74% for winds increasing to 10m s−1, while

TKE had only a weak, inverse effect on the reduction. In comparison with coincident KAZR observations of mean Doppler

velocity, MASC measurements of fall speed were in closest agreement only when both the MASC was shielded with a double

wind fence and winds were light (Usfc ≤ 5m s−1). For the lightest wind speeds (Usfc ≤ 1.5m s−1), shielded measurements of

orientation angles decreased to a mode of 12◦, and concentrations of sparsely-rimed aggregates with Dmax ' 7mm increased250

by a factor of five. However, we showed that even in these wind-restricted and shielded cases, a fraction of MASC-measured

fall speeds – those below a wind-speed-dependent cutoff fall speed that is most often vc . 0.5 – still do not match KAZR

measurements. We showed that this cutoff fall speed is a function of wind speed for shielded observations and provided linear

regression fits that can be used for additional quality control of MASC measurements.

Future work could include a double wind fence in the CFD simulation to see more precisely how the wind field evolves as255

it encounters the individual deflector fins in each portion of the fence, where these fins are allowed to move with the wind.

Thériault et al. (2012) simulated the wind field for a Geonor gauge with a single Alter shield by accounting for the movement

of deflector fins on the upstream side of the gauge, where fins were assigned angles with respect to the vertical that increased
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Figure 15. Cutoff MASC fall speed vc, defined in Sect. 3.2, as a function of surface wind speed Usfc for (a) all hydrometeor types, (b)

aggregates, (c) moderately rimed, and (d) rimed. The solid line in each subplot is a linear least squares best fit, while the shaded regions

bound the 95% confidence interval. Goodness-of-fit is measured by applying the Kendall rank correlation coefficient τ = 2(P−Q)/n(n−1)

(Kendall, 1938), where P is the number of concordant pairs, Q is the number of discordant pairs, and n is the total number of pairs. A value

of τ = 0 indicates no relationship and 1 indicates a perfect relationship. The confidence interval represents the range of error for predicting

a new value for vc. Only shielded MASC measurements are shown.

as a function of wind speed. Such careful simulation might improve the fidelity of wind-shield-gauge influence on snow

measurements.260

The intent of this work is to provide guidance for under what measurement conditions the MASC can be used to obtain

accurate information about hydrometeor microphysical properties and fall speeds. However, those conditions are limited to
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measurements within still air. The distributions of frozen hydrometeor size, type, orientation, and fall speed in natural, turbulent

air remain to be determined.

Code and data availability. The code and data supporting this project are available at https://doi.org/10.7278/S50DQTX9K7QY. This repos-265

itory includes code sufficient to replicate the observations analysis results. Raw and processed MASC data are available from the ARM data

archive at https://adc.arm.gov/discovery/#/, and raw MASC data can be processed with the mascpy code located at https://doi.org/10.7278/S50DVA5JK2PD.

OpenFoam v4.1 software can be downloaded at https://openfoam.org/version/4-1/.
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